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The paper features  the mathematical model of thermodynamic functions of state  in

over- and under- critical region in the liquid and gas domain  for pure refrigerants and

mixtures with the help of classical thermodynamics and statistical thermodynamics. To

calculate the thermodynamic properties of real fluid the Johnson-Zollweg-Gubbins

model  based on the modified Benedict-Webb-Rubin equation of state, Chunxi-Yigui-

Jiufang   equation of state based on simple perturbation theory and complex Tang-Tong-

Lu model  based on solution the Ornstein-Zernike equation with help of perturbation

theory,  was applied. To calculate the thermodynamic properties of real fluid with help of

classical thermodynamics we used Van Der Walls, Peng-Robinson, Benedict-Webb-

Rubin, Benedict-Webb-Rubin-Starling-Nishiumi  and Jacobsen-Stewart   equation of

state. We developed the mathematical model for the calculation of all equilibrium

thermodynamical functions of state for pure refrigerants and their mixtures. The

analytical results obtained by classical and statistical thermodynamics are compared with

the experimental data and show relatively good agreement. This paper presents the first

comparison between all presented models obtained by classical and statistical

thermodynamics.
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,QWURGXFWLRQ�FRPSXWDWLRQ RI WKHUPRG\QDPLF SURSHUWLHV RI WKH VWDWH

To calculate thermodynamic functions of state we applied  the canonical partition [1].

Utilising the semi-classical formulation for the purpose of the canonical ensemble for the

N indistinguishable molecules the partition function Z can be expressed as follows:
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where f stands for the number of degrees of freedom of individual molecule, H

designates the Hamiltonian molecule system, vectors
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molecules  and 
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momenta, k is Boltzmann`s constant and h is Planck constant.

The canonical ensemble of partition function for the system of  N  molecules can be

expressed like this:

FRQIQXFHOLUURWYLEWUDQV�
========= = . (2)

Thus the partition function Z is a product of terms of the ground state (0), the

translation (trans), the vibration (vib), the rotation (rot), the internal rotation (ir), the

influence of electrons excitation (el), the influence of nuclei excitation (nuc) and the

influence of the intermolecular potential energy (conf).

Utilising the canonical theory for computating the thermodynamic functions of the

state can be put as follows [2,3]:
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where T is temperature and V is volume of molecular system.
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The computation of the individual terms of the partition function and their derivatives

except of the configurational integral is dealt with in the works of Lucas [1], McClelland

[4] and Münster [5].

The various derivatives and expressions of the fundamental equations (3) have an

important physical significance. In These paper are  presented expressions which are very

important for planning the refrigeration processes. The various derivatives also prove to

be of physical interest:
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The isothermal compressibility:
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The heat capacity at constant volume per mole:
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The heat capacity at constant pressure per mole:
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The velocity of sound:
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The Joule-Thomson coefficient: 
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For a real fluid the  Johnson-Zollweg-Gubbins (JZG) model based on molecular

dynamics and Monte Carlo simulations with the Lennard-Jones intermolecular potential
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is possible to use. The modified BWR  equation of state (EOS) contains 32 linear

parameters (xL) and one non-linear  parameter (γ) [6].

 On this basis we can express configurational free energy AFRQI:
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where the coefficients aL, bL and GL are presented literature [6]. The coefficients aL and bL

are functions of  reduced temperature T only, the coefficients GL are function of the

reduced density ρ and nonlinear adjustable parameter γ.
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where AFRQI is reduced configurational free energy, σ and ε are Lennard-Jones

parameters.

Equation (9) accurately correlates the thermophysical properties from the triple point to

about 4 to 5 times the critical temperature. In equation (9) are xM´s the adjustable

parameters in the equation of state.

With help of configurational free energy we can calculate all configurational

thermodynamic properties. Expressions for calculation of configurational entropy and

internal energy are shown in literature [6]. We carried out all other expressions for

calculation of thermophysical properties.

E� 5HYLVLWHG &RWWHUPDQ PRGHO �&<-� >���@

Revisited Cotterman EOS is based on the hard sphere perturbation theory. The

average relative deviation for pressure and internal energy in comparison with Monte-
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Carlo simulations are 2.17% and 2.62% respectively for 368 data points [8]. The

configurational free energy is given by:
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where η is packing factor, D is hard-sphere diameter. With help of configurational free

energy we can calculate all configurational thermodynamic properties. Expressions for

calculation of configurational entropy and internal energy are shown in literature [7]. We

carried out all other expressions for calculation of thermophysical properties.

F� 7DQJ�7RQJ�/X PRGHO >�@

Tang-Tong-Lu model uses as the intermolecular potential a new two-Yukawa

function. This function is found to mimic very closely the Lennard-Jones potential. Tang-

Tong-Lu analytical model calculates thermodynamic functions of state on the base  of

salvation of the Ornstein-Zernike equation with help of perturbation theory. Comparisons

with the computer simulation data indicate that the developed expressions yield better

results (pressure, internal energy, free energy) than theory of Weeks at al. [1], Barker

and Henderson [5]. Results of pressure, internal energy and free energy obtained by TTL

model are comparable with the most recent modified Benedict-Webb-Rubin EOS. The

configurational free energy is given by:
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where a� represents the free energy of the hard sphere fluid, a� and a� are perturbed first

and second order parts. With help of configurational free energy we can calculate all

configurational thermodynamic properties. Expressions for calculation of configurational

entropy and internal energy are shown in literature [9]. We carried out all other

expressions for calculation of thermophysical properties.

Mixtures

The thermodynamic properties of Lennard-Jones mixtures are obtained using the one

fluid theory [10]. The molecules interacting with Lennard-Jones potential have

parameters σ and ε given by:
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5HVXOWV $QG &RPSDULVRQ :LWK ([SHULPHQWDO 'DWD

The  constants necessary for the computation such as the characteristic rotation-,

vibration-, electronic etc. temperatures are obtained from  experimental data [11,12,13].

The inertia moments are obtained analytically by applying the knowledge of the atomic

structure of the molecule. Constants for Lennard-Jones potential are obtained from the

literature [14].

Table 1 shows used models obtained by classical thermodynamics (Van der Waals

EOS (VDW) [22], Peng-Robinson (PR) [22], Redlich-Kwong (RK) [22], Benedict-
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Webb-Rubin [22] (BWR), Benedict-Webb-Rubin-Starling-Nishiumi [23,24] (BWRSN)

and Jacobsen-Stewart [25] (JS), the number of constants and their influence on polarity.

The futher calculation of thermodynamical functions of state on the base of fugacity

coefficient and chemical potential with help of classical thermodynamics is well-known

matter and is not described in this paper [26].

We carried out calculations for ammonia  R 717(NH�) carbon dioxide R 744 (CO�),

methane R 50 (CH�) and Argon R 740 (Ar) . The comparison of our calculations with

experimental results and thermodynamical data (Exp.) [15-22] are presented in Tables 2-

10.

Tables 2, 3 and 4 represent the deviation of the results in the real gas region between

the analytical computation and experimental data.

Table 2 shows the results for ammonia for the real gas region between the analytical

computation obtained by statistical thermodynamics (ST- statistical theory with help of

classical virial expansion [5], JZG Johnson-Zollweg-Gubbins model, TTL-Tang-Tong-Lu

model and CYJ Chunxi-Yigui-Jiufang model), models obtained by classical

thermodynamics (Table 1) and the experimental values (Exp). At the procedure of

computing the configurational integral with the  help of statistical thermodynamics on the

base of classical virial expansion (ST) the effects of mutual interactions up to three

molecules in the cluster were taken into account. The computed pressure conform well

for all models, obtained by statistical thermodynamics,  with the measured values. Larger

deviations can be found in the region of critical conditions due to the large influence of

non-isotropic multipolar interactions. The results for all models obtained by statistical

thermodynamics show relatively good agreement. Table 3  shows the results for carbon

dioxide in the region of saturated vapour. The computed velocity of sound conform well
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for all models, obtained by statistical thermodynamics, with the measured velocity of

sound. Somewhat larger deviations can be found in the region of critical conditions due

to the large influence of fluctuation theory [27] and singular behaviour of some

thermodynamic properties in the near-critical condition. Table 4 shows the deviation of

the results for air for Joule-Thomson coefficient between the analytical computation and

experimental results. The results of the Joule-Thomson coefficient agree considerably

well with the measured values. The perturbation models TTL and CYJ yield surprisingly

good results.

Tables 5 and 6 represent the deviation of the results in the real liquid region between

the analytical computation and experimental data for argon and carbon dioxide.

Somewhat larger deviations can however be found in the region of real liquid  due to the

large influence of the attraction forces, since the Lennard-Jones potential is only an

approximation of the actual real intermolecular potential. The best results in the real

liquid domain are obtained with the classical JS model. The comparison between

computed analytical results obtained by the statistical thermodynamics and measured one

shows slightly less good agreement of results. A considerable duration of results from the

measured values is observed in case of carbon dioxide (Table6 ) which is ascribed to the

influence of the multipole, induced and dispersion intermolecular non-isotropic forces.

Tables 7 and 8 represent the deviation of the results in the real liquid region between

the analytical computation and experimental data for for mixtures of rerigerants. JS

model is not appropriate for the calculation of thermodynamic functions of state of

mixtures
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&RQFOXVLRQ $QG 6XPPDU\

The paper presents the mathematical model for computation of thermodynamical

functions of the state in the real liquid and  gaseus region. For the real fluid the Johnson-

Zollweg-Gubbins model based on molecular dynamic and Monte Carlo simulations and

modified Benedict-Webb-Rubin equation of state. Tang-Tong-Lu complex perturbation

model and Chunxi-Yigui-Jiufang model was applied. We developed the expressions for

the calculation the velocity of sound, thermal expansion coefficient….

The analytical results are compared with the experimental results and analytical

calculation obtained by classical thermodynamics  and show relatively good agreement.

In comparison with experimental data, somewhat larger deviations can however be found

for polar fluids in the region of higher densities  due to the large influence of the

attraction forces, since the Lennard-Jones potential is only an approximation of the

actual real intermolecular potential.

1RPHQFODWXUH

A free energy

A reduced free energy

BWR Benedict-Webb-Rubin

BWRSN Benedict-Webb-Rubin-Starling-Nishiumi

c� velocity of sound

CS heat capacity at constant pressure per mole

C9 heat capacity at constant volume

CYJ Chunxi-Yigui-Jiufang model

D hard sphere diameter
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E potential energy

Exp experiment

f number of degrees of freedom

G free enthalpy

H enthalpy, hamiltonian

h,! Planck constant

JS Jacobsen-Stewart

JZG Johnson-Zollweg-Gubbins

k Boltzmann constant

M molecular mass

N number of  molecules in system

p pressure, momentum

PR Peng-Robinson

RP universal gas constant

RK Redlich-Kwong

S entropy

ST statistical virial theory

T temperature

T reduced temperature

TTL Tang-Tong-Lu  model

U internal energy

V volume

VDW Van der Waals

Z partition function
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β coefficient of thermal expansion

ε Lennard-Jones parameter

η packing factor

µ chemical potential

ρ density

ρ reduced density

µ- Joule-Thomson coefficient

ψL mle fraction of component i

χ isothermal compressibility

σ Lennard-Jones parameter
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Table1. Fundamental characteristics of various EOS obtained on the base of classical

thermodynamics.

EOS Number of used

constants

Influence of

polarity

Region

VDW 2 NO Real gas, mixtures

RK 2 NO Real gas

PR 3 YES Real gas,Phase transition

BWR 8 NO Real gas

BWRSN 16 YES Real gas, real liquid

JS 40-150 YES Real gas, Real liquid
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Table 2. Saturation pressure for ammonia (R 717)

7 >.@ ��� ��� ��� ��� ��� ��� ���

p (bar)

9': 3.53 6.44 12.6 21.9 35.4 57.2 83.7

35 3.42 6.29 12.2 21.7 34.3 52.5 76.9

5. 2.99 6.29 12.3 21.7 35.3 53.4 79.7

%:5 2.99 6.22 11.6 20.7 34.3 52.2 76.8

%:561 2.97 6.29 12.2 21.6 35.3 55.2 81.4

-6 2.89 6.21 11.6 20.3 33.0 50.9 74.7

67 2.96 6.20 12.7 22.9 38.8 63.7 106

-=* 3.03 6.21 12.7 22.8 38.7 63.3 104

&<- 3.02 6.22 12.7 22.9 38.8 63.7 106

77/ 3.02 6.22 12.8 23.0 38.9 64.0 107

([S� 2.91 6.16 11.6 20.3 33.1 51.0 75.6
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Table 3. The speed of sound c� for carbon dioxide (R 744)  (saturated vapour)

7 >.@ ��� ��� ��� ��� ���

F0 >P�V@

9': 216.1 209.0 202.4 188.0 180.2

35 218.4 217.0 214.7 204.8 139.1

5. 220.1 214.2 205.5 181.9 92.9

%:5 214.9 210.6 204.4 195.8 188.2

%:561 214.6 210.5 205.3 199.8 198.7

-6 216.7 211.5 204.5 195.4 184.4

67 217.9 223.5 209.9 208.6 219.3

-=* 219.3 219.3 212.9 203.7 194.1

&<- 223.8 219.9 213.8 204.2 191.0

77/ 226.4 223.2 218.1 210.2 199.1

([S� 217.5 212.7 206.3 197.9 189.8
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Table 4. Comparison of the Joule Thomson coefficient calculation for air (R-729)

µ-   [K/bar]:

7 >.@ ��� ��� ��� ��� ���

S >EDU@ � �� �� � ��

9': .623 .674 .145 .007 .007

35 .858 .630 .124 -.033 -.036

5. .782 .581 .105 -.019 -.024

%:5 .766 .560 .103 -.028 -.034

%:561 .793 .596 .086 -.014 -.0284

-6 .813 .643 .090 -.029 -.032

67 .750 .711 .110 -.017 -.023

-=* .799 .711 .109 -.022 -.022

&<- .829 .788 .109 -.028 -.031

77/ .750 .695 .110 -.024 -.028

([S�
.804 .644 .091 -.030 -.034
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Table 5. The isothermal compressibility  for argon (R 740) in the region of  compressed

liquid

7 >.@ ��� ��� ��� ��� ���

V [m�/kmol] ����� ����� ����� ����� �����

χ >*SD
-1
@

%:561 1.87 43.5 43.5 4.15

-6 4.09 2.27 47.6 5.1 6.05

-=* 4.09 2.39 40.40 4.9 5.9

&<- 2.50 40.80 5.23 6.04

77/ 4.09 2.38 38.71 5.04 5.80

([S� 3.42 42.96
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Table 6.The coefficient of thermal expansion for carbon dioxide  in the region of  boiling

liquid

7 >.@ ��� ��� ��� ��� ���

9 >P
3
�NPRO@ ����� ����� ����� ���� �����

β [1/K]

%:561 .0042 .0052 .0081 .0137 .028

-6 .0044 .0053 .0073 .0106 .035

-=* .0043 .0054 .0075 .0110 .0261

&<- .0041 .0050 .0065 .0062 .0201

77/ .0028 .0034 .0044 .0093 .0120

([S� .0080 .0140
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Table 7. The velocity of sound  for mixture of 85%R50 in 15%R744

35(6685(

c� (m/s)

7 0RGHO �� EDU �� EDU �� EDU �� EDU

&<- 363.1 348.0 339.0 334.1

-=* 362.9 371.1 337.8 333.1

77/ 363.1 347.6 337.9 331.4

67 359.4 346.1 335.6 328.8

9': 358.1 331.0 314.8 308.6

5. 369.8 381.2 412.0 434.1

%:5 367.5 370.0 371.1 374.1

%:561 365.4 355.6 342.1 341.9

��� .

([S� 359 342 332 330
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Table 8.Calculation of velocity of sound for 85%R50 and 15%R170 mixture at T=350 K

3UHVVXUH

� EDU �� EDU �� EDU �� EDU

&<- 448.3 446.5 443.9 443.9

-=* 448.2 446.0 443.0 443.1

77/ 448.2 446.1 442.8 442.6

67 448.1 446.7 441.1 441.5

9': 446.1 440.0 428.7 426.5

5. 446.7 442.7 436.9 436.1

%:5 446.9 443.5 438.7 438.7

%:561 448.1 443.2 441.1 443.1

([S� 448 444.7 441 442


